High Level Overview

AllPages
RecentChanges
Links to this page
Edit this page
Search
Entry portal
Advice For New Users

Please note - this is a pretty quick brain-dump, and some of the questions and conjectures will, in hindsight, be pretty obvious, or obviously wrong.

We apologise for any inconvenience.

Some preliminaries

We emphasise this occasionally, but for the record:

Where it starts ...

In 1989, A.D.Petford and Dominic Welsh published a paper:

Their algorithm is roughly:

This is like a form of simulated annealing (SA). In SA we pick a random configuration, jiggle it a bit, if it gets better then keep it (probably), if it gets worse then don't keep it (probably). As we go on, we make the probability of accepting a bad change go to zero.

In the Petford and Welsh algorithm we always accept the change, but we choose the new colour in such a way as to make it more likely to be better. The paper suggests different probability distributions to make that happen, and examines the effects.

Understanding this is not critical.

We make the following observations: In using the algorithm to colour lots of examples they found that with an appropriate choice of $P$ the algorithm worked quite well. They did, however, find that there were some graphs that were not coloured successfully by the algorithm. Investigating the difficult examples, Petford and Welsh say:

They then go on:

The concept of "phase transition" is also well known in random graph processes, perhaps the most common example being the emergence of the giant component.

So the takeaway here is this:

Idle speculation

Concerning 3-colouring ...

In everything that follows we assume
that the graphs are tri-partite, and
hence guaranteed to be 3-colourable.

We make some heuristic observations.

Remember:

If $G$ has very high average degree then it will almost certainly be easy to colour. Find any triangle, colour that, then many other vertices will have their colourings forced, and so the colouring emerges quite quickly. This is the case even if there are some vertices of low degree, because the majority of the graph will have its colouring forced, and the vertices of low degree will be few in number and not affect the main process.

On the other hand if $G$ has almost no edges then it will almost certainly be easy to colour, since "most" attempts will work, even if the result is not the default colouring.

So as the average degree goes from small to large it's plausible to think that the difficulty of colouring will go from easy, through a peak of difficulty, and return to being easy.

The model Petford and Welsh used to generate graphs to test their colouring algorithm was different. They took $n$ vertices, coloured them randomly, threw in random edges between differently coloured vertices, then discarded/forgot the original colouring.
Consider the random graph process where we add the edges of $K_{n,n,n}$ uniformly at random. We can consider each of the three induced bi-partite graphs and ask how long it takes for them to become connected. Standard results show that the onset of connectedness is relatively sharp, but there is an emergence of an equivalent of the giant component much earlier, so the induced bi-partite sub-graphs can be thought of as "effectively connected" much earlier.

In this I'm saying that a graph is "effectively connected" when the giant component has appeared. In other words, there are a few vertices not connected to the giant component, but they are few enough in number that we can ignore them when colouring the graph.

See the page on Effectively Connected.

The average degree at the onset of full connectedness is much higher than the observed "5 or 6" quoted in the Petford/Welsh paper, but we might wonder if the onset of "effective connectedness" is close to that number.

So we observe that in the Erdos-Renyi model of a random 3-colourable graph the area of difficult instances to colour does not correspond to the emergence of the connectedness of the induced bi-partite sub-graphs.

Inspiration

Consider the graph $K_{n,n,n}$. Remove all the edges, and then add them back in one by one in a random order. We can then ask at what point the graph becomes uniquely 3-colourable. Certainly when any of the induced bi-partite sub-graphs are not connected the default colouring is not the only one, so uniqueness of the colouring is much delayed.

But even before the induced bi-partite sub-graphs are connected, they will have a giant component, and are in a sense "effectively connected". When the giant component emerges in each of the induced bi-partite graphs, we may regard the stragglers as hairs that need to be shaved off. This loosely corresponds to the comment in the Petford/Welsh paper of the graph being "roughly regular."

We can then ask whether the shaved graph is uniquely 3-colourable.

Conjecture: The transition to uniqueness of 3-colouring corresponds closely to the emergence of the giant components in the induced bi-partite sub-graphs.

Speculation: The peak of difficulty of 3-colouring corresponds closely to the transition to uniqueness of the colouring.

Analysis

Consider a 3-colourable graph $G$ with colour classes $A$, $B$, and $C$, with $|A|=|B|=|C|=n$. Consider the induced sub-graph $H\subset G$ on $A{\cup}B.$

We consider whether $G$ is uniquely 3-colourable.

If $H$ is 2-regular then it is almost surely not connected. We can consider the partition induced on $A$ by the components - we call them enclaves. For each enclave in $A$ there is a corresponding enclave in $B,$ and it is easy to see that the 2-colouring on $H$ is not unique, as colours on corresponding enclaves can be swapped.

In the diagram here we see $H$ with two enclaves, two components, and the vertices circled in grey can be given the colour corresponding to the vertices in the other set.

Conjecture: If $H$ is 3-regular then it is almost surely connected.

Given two sets of size $n$, three edge-independent matchings gives a 3-regular bi-partite graph (and the converse is true ... all 3-regular bi-partite graphs can be decomposed into (obviously exactly three) edge-independent matchings).

Initial experiment

As an initial exploration of this idea we ran the following experiment.

Generate a random graph $G=G(n,k)$ as follows:

Setting $n=100$ and letting $k$ range from 0 to 100, we then generated 8 graphs, and for each of those ran an off-the-shelf graph colouring program, timing how long it took. The program did not indicate if the colouring was unique, but a measure was taken of whether the colouring found was the default colouring present by construction.

For each graph the program was run 8 times with different initial random seeds. It's plausible that if alternate colouring were present, at least one of those runs would find it.

So for each value of $k$ the colouring was run eight times on each of eight different graphs, and if the default colouring was found it was counted. Here is a graph of the results:

More detail about the chart
The dark blue line is the average time in seconds taken to colour all of the 64 graphs. The light blue line is a moving average (and probably not worth much). The red line is a count of the number of times the default colouring was found. Its maximum is 64 because for each $k$, that's how many graphs there are.

This clearly shows a correlation between time taken to colour the graph(s) and the onset of probable uniqueness of the colouring. The difficult graphs to colour are the ones with $k$ between 50 and 70, with the peak occurring between 55 and 60. When $k=58$, the average degree is 5.16, which corresponds nicely to the observation of Petford and Welsh.

Next experiment ...

The next experiment might be this:


Links to this page / Page history / Last change to this page
Recent changes / Edit this page (with sufficient authority)
All pages / Search / Change password / Logout