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A RANDOMISED 3-COLOURING ALGORITHM 
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This paper describes a randomised algorithm for the NP-complete problem of 3-colouring the 
vertices of a graph. The method is based on a model of repulsion in interacting particle 
systems. Although it seems to work well on most random inputs there is a critical phenomenon 
apparent reminiscent of critical behaviour in other areas of statistical mechanics. 

1. Antivoter models 

In the original voter and antivoter models studied by Donnelly and Welsh [2,3] 
the vertices of a graph G are either black or white and at random epochs of time 
a vertex, chosen at random, changes colour according to a specified stochastic 
mechanism. In the antivoter model each vertex has attached to it a clock which 
acts independently for each vertex. When the clock at vertex r~ rings, one of its 
neighbours, say u, is selected at random and v changes its colour so that it is 
different from that of u. Thus if u happened to be a different colour to v the 
colour of v would not change. 

The process is a Markov process with state space consisting of all possible 
Zcolourings of the vertex set V of G. 

In the antivoter model there are two possibilities depending on the graph G: 
(a) if G is bipartite, the system is, with probability one, absorbed in one of the 

proper 2-colourings, or 
(b) if G is not bipartite then the system continues to evolve without ever 

reaching an absorbing state. 
Prompted by noticing the speed with which the antivoter model with 2 colours 

seemed to settle down to equilibrium we proceeded to try to extend the model to 
3 colours. 

The underlying combinatorial problem is now the 3-colouring problem which is 
known to be NP-complete. Hence the likelihood of being able to find a truly 
randomised algorithm analogous to the Rabin-Solovay-Strassen algorithm for 
primality testing is remote. The existence of such an algorithm would imply that 
random polynomial time (RP) equalled nondeterministic polynomial time (NP). 
This would be highly surprising unless, of course, NP turns out to equal p (see for 
example Welsh [lo]). 

With more than 2 colours the antivoter model has at least two natural 
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formulations of the way in which a vertex chooses its new colour once it has seen 
and been repelled by the colour of a randomly chosen neighbour. We proceed to 
define the general antivoter model with 3 colours as follows. 

Consider a fixed instant of time t. For 1 s i < 3 let Si(V) denote the set of 
neighbours of vertex v which are coloured i at t and let Si(V) be the cardinality of 
S’(V). When the clock at ZJ rings, instead of r~ changing colour to that of some 
randomly chosen neighbour we stipulate that the new colour of v is a random 
colour X where 

P(X=j)=p(sl,s2,s3:j), 1+=3, 

and where si = si(v) and where p is the transition function satisfying the conditions 

(0 phs2,s3:j) 20, 

(2) j$lph s2, s3: j) = 1. 

Note. Here and throughout, where necessary, we shall identify the set of colours 

used with the set of integers {1,2,3}. 

By suitably choosing p we get different versions of the antivoter model. 

Example 1. Consider now the antivoter model having transition function given by 

1 
- p(s,, s2, s3: i) = 5 1 - 

( 
(s,+;+s3) , 

) 
l<i<3, 

This represents the situation where if the clock at v rings, a neighbour u is chosen 
at random and vertex v then chooses a colour at random from the two colours 
which are not the colour of u. In other words it is repelled by u’s colour but 
otherwise chooses independently. 

2. The randomised algorithm 

The basic idea of our algorithm for deciding if a graph is 3-colourable is as 
follows: 

(1) Colour the vertices arbitrarily v;irh 3-colours 
(2) Allow the antivoter mechanism with transition function p to operate on G 

for a time t(n) where n is the number of vertices and t is the threshold 
functiort 

(3) After time t(n) announce the graph as 3-colourable if a proper 3-colouring 
has been achieved and as not 3-colourable otherwise. 

Clearly the algorithm has the following properties. 
(a) If it says G is 3-colourable then it is correct 
(b) If it says G is not 3-colourable it may be incorrect. 
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The probability of an error depends on G, and the choice of threshold function 
t, and on the choice of transition function p. 

‘I& object of the simulation exercise is to 
(i) find a ‘good’ transition function p 

(ii) for this good transition function find a threshold function t in which we can 
have a fair degree of confidence. 

Although the physical models studied in [2] and [3] work in continuous time, 
there is no advantage in sticking to this in using these i&as for developing an 
algorithm. Accordingly we stipulate that the “clock ringing random mechanism” 
works as follows: 

The Clock Ringing Mechanism: A vertex is bad at time t if it has a colour which 
is the same as any one of its neighbours. Bt denotes the set of bad vertices at time 
t and as time progresses through t = 0, 1,2, . . . , the clock chosen to ring at time 
t + I is a random member of Bt. Initially we start with a random colouring. 

As soon as Bt becomes empty the system stops. 
We measure the time taken by the process to be the number of times a random 

member is chosen from the set of bad vertices. We denote it by T(G) and it is 
ciearly a random variable whose distribution depends on G and the transition 
function p. 

For any non-trivial p and G it is clear that T = T(G) has a non-zero probability 
of taking arbitrarily large values and the real quantities of interest are the first 
moment of 7’ and the size of the tail distribution. 

As a test of the proposed algorithm we introduce the concept of a random 
benchmark for the problem, and thus evaluate its performance on ‘typical’ or 
‘random’ 3-colourable graphs. We construct these graphs in the following way. 

Choose integers kl , kZ, k3 with (k, + k,+ k3 = n) and take disjoint sets VI, V2, 
V3 with IV;:1 = ki. Take the vertex set of the benchmark graph to be V = VI U V2 U 
V3 and for each pair of vertices x and y with x E x and y E I@ #j) join X, y by an 
edge with probability p, 0 < p < 1, independently for each such pair of vertices x 
and y. We denote the class of such graphs by %(k, , k2, k,; p). 

In each of the simulations described below we use T(n) to denote the estimate 
of the average time to colour an n vertex graph from the proposed class of graphs 
under consideration. 

3. The simulation results 

Our pilot runs were on the class of graphs %(k, k, k; $) for k = 4 to 20. WC 
took the view that any algorithm worth pursuing ought to be tested first on this 
easily constructed model. Preliminary results were reported in [I l] and can be 
summed up in the following observations: 

Observation I. Random algorithms based on antivoter models with transition 
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T(n) 

0 60 120 180 240 300 
n 

Fig. 1. Data from 100 triais for each value of n. 
p =8.5 

xp =o.!J 
op = 0.3 

functions p of type described in Example 1 above or of the other repulsive type 
functions 

(1) pi(S*, S2, S3: i, - l/Si 
(2) pi(Sl* S2, S3: i) - I/s,” 

do not efficiently 3-colour random 3-colourable graphs. 

Observation II. A random algorithm based on an antivoter model with transition 
function p given by 

pi(S,, S2, S3: i) - 4-” 

appears to achieve a 3-colouring of a random member of the class ‘;e(n/3, n/3, 
n/3; 4) in time which is linear in n. 

Because of ,rh~ success with this transition function we ran 100 simulations for 
each n in ?he range n = 60-300, step size 60. The results as shown in Fig. 1 seem 
to justify Qbservation II. 0ne slight curiosity in Fig. 1 is the way in which the 
curve of p = 0.3 crosses the two other curves at a relatively low value of n. 

We should say that we have no theoretical justification for the choice of 6 = 4 
in our tr _ansition function except that it seems to work at least as well as any &her 
8 used. The same applies to our use of an exponential form for the transi&n 
function, though intuitively we believe that the random colouring process we are 
constructing is somewhat akin to approaching the position of minimum energy in 
rzo:e classical problems of statistical mechanics, as suggested by Kirkpatrick’s 
method of simulated annealing [8] for the travelling salesman problem. 

In order to see whether the linear trend exhibited in Fig. 1 holds for larger 
values of n we proceeded to run the experiment for larger values of n, and for the 
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n 

Fig. 2. p = 0.5 

cases p = 0.3, 0.5 and 0.9 found this to be the case. In Fig. 2 we show the results 
of our simulation for the case p = 0.5. The cases p = 0.3, p = 0.9 are similar. 

However for the case p = 0.1 as shown in Fig. 3 we did notice a curious 
phenomenon, namely the existance of a ‘hump’ at about PT = 80. This critical 
region was examined in greater detail and the results are shown in Fig. 4. 

For future reference note that the critical region (n = 80) means that the 
average vertex degree of a vertex in the critical case is 2np/3 = E/3. 

Further simulation for the cases p = 0.05 and p = 0.02 (one of which is shown 
in Fig. 5) suggest that the existence of a critical region is not an isolated 
phenomenon but appears to occur at about a value of II corresponding to the case 
where the average vertex degree is about 5 or 6. As a further test we ran 

5000 
T(n) 

4000 
i 

3000 

11 11 11 ” ‘J 
0 200 100 600 800 1000 

n 

Fig. 3. p =O.l 
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n 

Fig. 4. The critical region in detail for p = 0.1 

simulations for the case p = 0.005 (shown in Fig. 6) which tend to confirm our 
ideas that for this particular method of colouring the most difficult case among the 
class of “roughly regular” graphs is the case when the graphs have low vertex 

degree, say 5 or 6. 
We have no theoretical explanation of this curious behaviour. It is not unlike 

the phenomenon of phase-transition which occurs in the Ising model, Potts model 
and other models of statistical mechanics and to which this model bears some 
resemblance (though of course we are using a finite version here). 

We close this section by reporting briefly the results of some further 
experiments. 

(I) Changing the value of 0 did not seem to affect the position of the critical 
region in the ranges of n that we were able to work with. 

T(n) 

6000 - 

1 1 1 I I I I 1 I 
0 200 400 600 800 1000 

n 

Fig. 5. p = 0.05 
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Fig. 6. p = 0.005 

There seems very little difference in the behaviour of the algorithm on the 
slightly “more random case” where instead of the benchmark graphs 
having equal colour sets, the graphs used as test graphs were constructed 
by the following method used by K&era [9]; 

(i) Take a set V of it vertices and arbitrarily colour the members of V 
with 3 colours so that each vertex has, independently, probability 3 of 
being assigned any particular colour 

(ii) Do not connect a pair of vertices which are assigned the same colour 
(iii) For each pair of vertices in different colour sets let them be joined 

with probability p, independently of the presence of other edges 
(iv) Forget the colouring of the vertices. 

This procedure will give a graph which by construction is 3-colourable. 

4. Conclusion 

Various problems are suggested by the above results. 
First we should remark that the randomised algorithm proposed does seem to 

work well in a wide variety of cases. As far as we know the two situations in 
which it does not appear to 3-colour a 3-colourable graph G efficiently are: 

(a) when the only 3-colouring of G decomposes the vertex set V into disjoint 
sets A, B, C in which the size of A is much larger than that of B or C; 

(b) when G is approximately regular with a low vertex degree, say of the order 
of 5 or 6 for a 1000 vertex graph. 

It led us to suggest that possibly Carey Johnson and Stockmeyer [7] did the 
community a disservice in proving their theorem which states that 3-colouring is 
NP-complete, (even) for graphs of maximum vertex degree 4. It could be that 
these graphs are among the hardest to colour and it led us to conjecture that if for 
any tied cu> 0 C!&(n) denotes the collection of graphs with n vertices and 
minimum vertex degree at least cm then for this class of graphs the colouring 
problem can be done in polynomial time. This was proved for the case of 
3-colouring and cu> $ by Farr [S] and then extended by Edwards [4] who proved 
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that for k > 3 the conjecture 
O<cus(k-3)l(k-2). 

In addition to the “random 
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is true if a> (k 

benchmark” test 

- 3)/(k - 2) and false for 

graphs used in the above 
simulation we have tried the algorithm out on some “apparently difficult” graphs 
sent to us as a challenge by R. Irving and K.W. Regan. These examples 
consisting of two Kneser type graphs of 70 and 130 vertices respectively together 
with a graph of 341 vertices which was the line graph of a planar graph with no 
small reducible configuration were correctly coloured in. a matter of seconds by 
the programme (written in the language C) on a Perkin Elmer mini-computer. 

We have made a preliminary approach to extending the above methods to the 
k-colouring problem for general k > 3. In principle this should not present any 
greater problem. In practice this does not seem to be the case, preliminary 
investigations for the case of k = 10 suggest that the method is not as good; one 
reason for this may be that the amount of experimentation needed to find a good 
transition function in this case takes much more space and time. 

Another feature of the method is that preliminary work to start off with a 
“good colouring” in the sense that the initial bad set B0 was small did not seem to 
speed up the algorithm. This can be explained by regarding such a good colouring 
as approaching a local optimum which is a long way in the metric of exhanges 
from the true global optimum. 

Finally we remark that since the above experiments were first carried out in 
1985 Zerovnik [12] has checked the algorithm by independently verifying our 
results using a different language and machine at the University of Ljubljana. 
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