
How High the Moon

A paper for G4G9

by Colin Wright

We're going to compute the distance to the Moon using a few
well-known facts, a few simple observations, a pendulum, and a
stopwatch. Pretty much everything here was known to Isaac
Newton in the late 1600's, and it's even been suggested that he
performed pretty much exactly these calculations.

Maybe, maybe not. Let's just see what we can do with some really
elementary reasoning.

We'll warm up with a well-known (in some circles!) question:
How far is the horizon?

Some time ago while drifting
off to sleep it seemed like a
bunch of stuff I knew all tied up
together into a neat bundle.

Then I woke up.

Surprisingly, it all still worked!
Here are the results.

We'll pretend things are simple. We'll pretend
the Earth is a sphere, and suppose we're at the
top of a tall mountain, say, 5 metres high. (Yes -
I know that's not very tall really, but bear with
me ...)

We can create a right-angled triangle with one
corner at the centre of the Earth, one corner at
our position, and one where our line-of-sight
tangents the Earth's surface.

Our good friend Pythagoras now steps up and
says that R2+H2=(R+5)2, which can be expanded
and simplified and we get

(As in this case, I'll keep the equations in the main text fairly
simple throughout and expand on them in the boxes on the right
side of the page. Ignore them if you just want the main ideas, or if
you want the challenge of working out the details yourself.)

Now, the original definition of the metre was "One ten-millionth
of the distance from the North Pole to the Equator through Paris,"
which means the circumference of the Earth is 40 million metres,
so the radius is roughly 6.4 million metres. Substituting this we get

R2+H2=(R+5)2

R2+H2=R2+2x5xR+52

R2+H2=R2+10xR+25
so
H2=10xR+25
Then we ignore the 25.

 and so  

So from a height of 5 metres, the distance to the horizon is about 8000 metres, or 8km.
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Now let's turn it around. Suppose we're at sea level
and 8000m from the top of a 5m high mountain.
Suppose further we fire a projectile line-of-sight at
the peak, ignore air resistance, and it gets there in 1
second (unlikely, I know). In one second it will fall
about 5m, because acceleration due to gravity is
about 10m/s2, so by the time it gets there, it will still
be at sea-level. In other words, it will be grazing the
Earth's (perfectly spherical) surface.

It's in orbit.

So we've just shown that subject to all our
approximations, orbital velocity at grazing altitude is
8 km/s. Quite astonishing how our good friend
Pythagoras is, in some sense, "Rocket Science."

So now let's be a little more general. Instead of
being exactly 5m high, let's pick an
acceleration a and an amount of time t and
suppose we are at2/2 high.

Our Pythagorean triangle equation now
becomes

We simplify, divide through by t2, throw away
the irrelevant small part, and then remember
that distance over time is velocity. That means
we get

or equivalently,

That seems arbitrary, I know, but distance fallen in
time t under acceleration a is given by d=at^2/2 so
we're at a height such that something will fall that
distance in time t.

Ignoring the last term (because it's small)
and cancelling the R2 term, we get:

Suddenly we have the formula
for acceleration in a circle.

Which is nice.

What does this have to do with
the Moon?

You may ask why something moving in a circle is accelerating? Well,
its speed may not be changing, but its direction is. If left alone its
direction wouldn't change, so something must be pushing on it,
changing its direction. Newton tells us that Force is Mass times
Acceleration, so if there's a force, there must be acceleration.

I've also been somewhat cavalier about ignoring small quantities and so
forth. In truth there are some details about limits and such like, and
that's where the serious calculus should be done.
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If we suppose the Moon to be moving in a circular
orbit, and supposing the radius of that orbit to be
M, we can now say that its acceleration in orbit is
v2/M. So if only we knew how far away it was, and
its velocity, we would know its acceleration.

But if we know its distance then we do know its
velocity, because we know it takes 29.53 days from
full moon to full moon. Correcting for sidereal
time, that means it takes 27.32 days to make a
complete circuit of the Earth. Call that time P.
Therefore the Moon's velocity in orbit is

When the Moon goes around the Earth, the Earth
is also going around the Sun. In the 365.25 days it
takes for a year the Moon goes around the Earth -
apparently - some 365.25/29.53 times. However ...

The orbit of the Earth itself adds another complete
rotation. From the point of view of the stars the
Moon hasn't gone around 12.37 times, it's gone
around 13.37 times, and that means that each orbit,
from the point of view of the stars, takes
365.25/13.37 days, or 27.32 days.

Thus the sidereal orbital period of the Moon is
27.32 days.

So we have the formula for acceleration in a circle that needs the
distance and velocity, but we now know both of those, so we can say
that the Moon's acceleration is this:

Is that of any use?

Well, we know that acceleration due to gravity is what holds the
Moon in orbit, so if only we knew how hard the Earth is pulling the
Moon, then we would know that.

But we do.

We know that acceleration at the Earth's surface, at
distance R from the centre, is g. We also know that it
falls off as an inverse square. Hence the acceleration
due to gravity at any distance, say M, is given by:

where R is the Earth's radius.

So putting it all together we get:

The "inverse square" bit means this. As you get
further from something, the amount of
gravitational force it exerts on you is less.
Newton's law tells us exactly how much less.

A square that's three times the side-length has
nine times the area. In the same way, if you go
three times as far from something, the force it
exerts on you will be nine times less.

acceleration in a circle :

acceleration due to gravity :

Therefore

And we know everything on the right hand side, except g.
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But we can find g with a pendulum and a stopwatch. (I knew you'd be wondering where they came in.)

We know that the time taken for a
complete swing of a pendulum is
given by the formula:

Rearranging this we get:

We can substitute that into our
earlier formula and we get

And now we know everything!!

For very small displacements, the force pulling a pendulum back
into the vertical is proportional to the amount it's been displaced.
More specifically, the ratio of restoring acceleration to gravity is
the same as the ratio of displacement to pendulum length. As a
formula:

That means that the formula for its motion (in simple form) can
be written as

where a is the amplitude of the swing, and 

One cycle is then complete when  and so one
complete cycle of the pendulum takes  seconds.

Of course we have to go away and construct a pendulum, and then we have to measure how long it takes to
swing. Typically we measure 10 swings, both back and forth, and then divide the total time by 10. We should
also do that several times to make sure we get error bars on the result, because each one will vary slightly.
There's lots to do here.

So what do we get? Here are my results:

Length of the pendulum : 0.45 metres
Period of a pendulum : 1.345 seconds
Moon's orbital period : 27.32 x 86400 seconds

Radius of the Earth :

A moment's work with a calculator, and we compute that the
distance to the Moon is 383 thousand kilometres.

Which is the right answer.

Of course, the Moon's orbit isn't circular, the Earth isn't of
constant radius, nor is it a sphere, and we've assumed that the
metre is one ten millionth of the distance from the North Pole to
the Equator. But even so, we're not just in the right ball park,
we're smack in the middle of the true range.

Not bad for a few sums.

As a final note to comment on the
fundamental inter-connectedness of
things in mathematics and science,
the correction for sidereal time is
related to a problem from Martin
Gardner's Mathematical Circus:

If you roll a coin around a fixed coin
of the same size, keeping the rims
together to prevent sliding, how
many rotations will it make in a
round trip?
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